EPAct Unconventional Resources Complementary Program Research Overview

Alexandra Hakala
Geosciences Division, Office of Research and Development, National Energy Technology Laboratory, U.S. Department of Energy

RPSEA Unconventional Gas Conference 2012: Geology, the Environment, Hydraulic Fracturing
April 17-18, 2012
Canonsburg, PA
EPAct Unconventional Resources
Complementary Program Research Overview
Alexandra Hakala
Technical Coordinator, Shale Gas
Geosciences Division, Office of Research and Development
National Energy Technology Laboratory
Pittsburgh, PA
NETL EPAct Unconventional Resources Research

 - Section 999: Ultra-Deepwater and natural gas supply R&D program funded at $50 million per year
- NETL-RUA implements a “Complementary” research plan
 - Portfolio of oil/natural gas related research conducted by the NETL-RUA that supports the goals of EPACT
- Consortium administered program elements
 - Research Partnership to Secure Energy for America (RPSEA)
 - Comprised of U.S. energy research universities, industry and independent research organizations
NETL-Regional University Alliance

- NETL’s Office of Research and Development
- URS
 - Carnegie Mellon University
 - Pennsylvania State University
 - University of Pittsburgh
 - Virginia Tech
 - West Virginia University
Risk assessment requires predicting the potential for a deleterious event as well as its consequence.

Risk = probability \times consequence

Focus for FY12 Research:

- **Field Data** to establish baselines and impacts of processes
- **Laboratory Data** for simulations and confirmation of field data
- **Computational Tools** to characterize and predict system baselines and behavior
EPAct Unconventional Resources FY 2012 Portfolio

Air quality monitoring to evaluate environmental integrity of sites undergoing oil and gas development
- Characterize baseline environmental signals
- Fugitive air emissions

Evaluating water quality and treatment using established and novel techniques
- Characterize baseline environmental signals
- Produced water composition and treatment
- Naturally-occurring isotope tracers

Integrated modeling and monitoring for predicting fracture growth and induced seismicity
- Characterize baseline environmental signals
- Prediction of fracture propagation
- Coupling microseismic data and geomechanical models

Information-based tools for predicting and evaluating implications of onshore unconventional resource development
- Characterize baseline environmental signals
- Fluid-gas-rock interactions in shale
- Evaluating distribution and provenance of saline fluids and methane in shallow groundwaters
- Predictive tools for risk assessment
Air quality monitoring to evaluate environmental integrity of sites undergoing oil and natural gas development

- **Historical Successes (2005 – 2011)**
 - NETL Air Quality Monitoring Laboratory
 - Designed and fabricated one-of-a-kind mobile ambient air quality monitoring station with remote data collection
 - Preliminary conclusions for Allegheny National Forest show no major difference between sites downwind of oil and gas operations and a control site
Current focus: Baseline air quality monitoring and definition of fugitive methane emissions
Evaluating water quality and treatment using established and novel techniques

- **Historical Successes (2005 – 2011)**
 - Subsurface drip irrigation (SDI) successful reuse strategy for coalbed methane produced waters
 - *NETL’s research established the science-base behind SDI discharge permit requirements by the WY Dept. of Environmental Quality*
 - Strontium isotopes able to distinguish difference between AMD and Marcellus Shale produced waters
 - *Established science base for further development of novel water quality analytical tool*

Multicollector ICP-MS for high-throughput isotope analysis
Current focus: Evaluating surface pond aeration

- Detailed study of the chemistry and microbiology of produced water during surface storage

Chemistry

![Conductivity Chart]

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Sulfide (mg/l) Before Aeration</th>
<th>Sulfide (mg/l) After Aeration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>43</td>
<td>36</td>
</tr>
<tr>
<td>6</td>
<td>37</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>10</td>
<td>37</td>
<td>1</td>
</tr>
</tbody>
</table>

Microbiology

![Microbiology Image]

- Static
- Aerated

Oxidation Reduction Potential

![Oxidation Reduction Potential Chart]
Current focus: Use of natural isotopic signals to identify geologic source of fluids

Multicollector ICP-MS for high-throughput isotope analysis
Integrated modeling and monitoring to predict fracture growth and induced seismicity

- **Historical Successes (2005 – 2011)**
 - “Intelligent modeling” process for simulating fractured reservoir systems (e.g., the Bakken oil-bearing shale)
 - Improved production and well placement
 - FRACGEN/NFFLOW multi-layer version was released to the public and is being used by small- to mid-size operators to design production operations

- **Current approach**
 - Develop predictive capability for hydraulic fracture growth and microseismic events
 - Back-track the source of regional microseismic events to specific subsurface phenomena (and distinguish signals between natural vs. oil and gas related events)
Information-based tools for subsurface processes in oil and gas development

• **Historical Successes (2005 – 2011)**
 - Airborne magnetic surveys detected the location of unknown wells in an active WY CO₂-EOR field
 - *This information led to solutions to stop for unwanted CO₂ leakage from previously-unknown leaky wellbores*
 - Assemblage of 3-D geologic framework model for the Marcellus Shale using commercial software (EarthVision) –
 - *Used for developing well designs, completion techniques, and efficacy in producing hydrocarbon resources*
 - *Key foundation for risk assessment modeling of shale gas operations*
 - Developed foundation for shale gas regional assessments on gas productivity and potential environmental issues (e.g., sources of metals and contaminants)
Development of information tools for integrated assessment modeling
Questions?

Complementary Program Research Overview

Alexandra Hakala
Technical Coordinator, Shale Gas
Geosciences Division, Office of Research and Development
National Energy Technology Laboratory
Pittsburgh, PA